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Abstract

This work examines the effect of inter-particle collisions on the motion of solid particles in two-phase

turbulent pipe and channel flows. Two mechanisms for the particle–particle collisions are considered, with

and without friction sliding. Based on these collision mechanisms, the correlations of the various velocity

components of colliding particles are obtained analytically by using an averaging procedure. This takes into

account three collision coordinates, two angles and the distance between the centers of colliding particles.

The various stress tensor components are obtained and then introduced in the mass, linear momentum and
angular momentum equations of the dispersed phase. The current approach applies to particle–particle

collisions that result from both the average velocity difference and the turbulent velocity fluctuations. In

order to close the governing equations of the dispersed phase, the pseudo-viscosity coefficients are defined

and determined by the time of duration of the inter-particle collision process. The model is general enough

to apply to both polydisperse and monodisperse particulate systems and has been validated by comparisons

with experimental data.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

A parameter that measures the importance of inter-particle collisions in a flowing gas–solid
mixture is the ratio of the particle response time, b�1

ui , to the time of inter-particle collisions, tc. For
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dense particulate flows, buitc < 1, and particle-to-particle collisions must be taken into account.
There are many theoretical studies on the subject of the inter-particle collision phenomena:
Williams and Crane (1983) obtained an expression for the collision rate of the particles and their
relative velocity in a turbulent flow in terms of the Stokes number. The Lagrangian approach of
particle collisions was used by many researchers in the past including, more recently, Sommerfeld
(2001) who introduced a stochastic inter-particle model when a fictitious particle and trace par-
ticles collide. Jenkins and Savage (1983) used a Eulerian approach that accounts for inter-particle
collisions in the case of rapid granular flows. The so-called ‘‘granular temperature,’’ which is an
analog of the temperature obtained from a kinetic theory approach, may be calculated from the
velocity distribution function of the particles. Other constitutive relations, also based on the ki-
netic theory, may be obtained by using the characteristic shape of the velocity distribution
function. In the particular case of nearly elastic and frictionless inter-particle collisions this
function may be assumed to be Maxwellian. In such a case, an expression for the total stress of the
particles� collision may be obtained as in Louge et al. (1991) who used closure equations that
involve the pseudo-viscosity coefficients and the stress tensor components corresponding to the
collision terms in the transport equations of the dispersed phase.

In previous models for the closure of governing equations of the dispersed solid phase based on
inter-particle collision (Hussainov et al., 1995; Frishman et al., 1997), an approximation was used
(Babukha and Shraiber, 1972), that considers only one mechanism for the particle collisions, that
is collision without sliding friction at the point of contact surfaces. These authors also took into
account the effect of surface roughness by using an empirical roughness coefficient. This mech-
anism applies only to the motion of particles where the transverse component of the velocity is
higher than the longitudinal (tangential) component at the moment of collision. It must be
pointed out that the solution of such models cannot be achieved in the limiting case of the col-
lision of identical particles because the computed pseudo-viscosity coefficients diverge since the
time of inter-particle collisions becomes infinite.

Feng and Michaelides (2002) examined the drag on particles in the proximity of a wall.
Matsumoto and Saito (1970) investigated particle–wall collisions and determined two mechanisms
of interaction namely, collision with and without sliding friction at the point of surfaces contact.
They also determined criteria for the application of these mechanisms. According to their
investigation, if the ratio of transverse to tangential velocities is smaller than 2=½7f ð1þ knÞ� a
collision with sliding friction is observed. Otherwise, a collision without sliding friction occurs and
the tangential velocity is zero at the point of impact. The analyses of particle–wall and particle–
particle collisions considering various stages of the collision process are presented in Crowe et al.
(1998). They also considered separate expressions for the linear and angular velocity changes for
both of these mechanisms.

In order to cover all plausible situations that may occur in a gas–solids flow, we developed a
model that accounts for the mechanism of collision with sliding friction. Besides the improvement
of the former models for inter-particle collision, an important motivation for the development of
such a model is that it may be applied to identical particles without the divergence of the pseudo-
viscosity or any other any parameter. With a sliding type of collision friction, we are able to
reduce the terms related to the angular velocity in the expressions of the stress tensors in the
linear–linear and linear–angular velocity correlations. This makes it possible to perform collision
calculations for various sizes of particles that flow simultaneously in the mixture. Thus, the
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present model is flexible to the variation of all the flow parameters and may also be applied in the
case of polydisperse mixtures.
2. Closure of equations for dispersed particulate flows

The closure equations for the dispersed phase flow presented here are based on the inter-
particle collision and are obtained by using a two-fluid model approach and an eddy-viscosity
concept. The model describes the two-dimensional motion of the dispersed phase, when the
particle angular velocity vector is normal to the plane of the translational motion of the par-
ticles. We have adopted this assumption for two reasons: (a) the equations of the model are
simpler and less cumbersome to use, and (b) a great deal of the angular momentum of
the particles is imparted by collisions with the walls of the flat channel. These collisions tend
to align the angular velocity vector in a direction that is perpendicular to the plane of
motion.

Following Crowe et al. (1998) the impulsive force exerted from particle ‘‘i’’ to particle ‘‘j’’
during the collision of two hard spheres may be decomposed into a normal unit vector,~e, directed
towards the center of the first particle ‘‘i’’ and a tangential unit vector,~s ¼ ~Gij=j~Gct

ij j. Hence, we
have ~J ¼ Jn~eþ Js~s.

The following relation gives the condition for the importance of sliding friction collision:
~e � ~Gji=j~Gct
ji j < 2=7f ð1þ kpnÞ: ð1Þ
The tangential component of the impulsive force Js may be expressed in terms of the normal
component Jn as Js ¼ fJn with f being the Coulomb friction coefficient. The corresponding for-
mulae for the translational and angular velocity changes of the two colliding particles ‘‘i’’ and ‘‘j’’
are given by Crowe et al. (1998) as follows:
~v0i �~vi ¼ bjið1þ kpnÞð~e� f~sÞð~e � ~GijÞ; ~v0j �~vj ¼ �bijð1þ kpnÞð~e� f~sÞð~e � ~GijÞ; ð2aÞ
and
~x0
i � ~xi ¼ 5bjið1þ knÞð~e � ~GijÞð~e�~sÞ=di; ~x0

j � ~xj ¼ 5bijð1þ knÞð~e � ~GijÞð~e�~sÞ=dj: ð2bÞ
If condition (1) is not satisfied, then we have the following expressions:
~v0i �~vi ¼ bjibð1þ kpnÞð~e �~GijÞ~eþ ð2j~Gct
ij j~s=7Þc; ~v0j �~vj ¼�bijbð1þ kpnÞð~e �~GijÞ~eþ ð2j~Gct

ij j~s=7Þc;
~x0

i �~xi ¼�5bjij~Gct
ij jð~e�~sÞ=3:5di; ~x0

j �~xj ¼�5bijj~Gct
ij jð~e�~sÞ=3:5dj:

ð3Þ

The prime in the above expressions denotes the post-collision state.

The vectors ~Gij ¼~vj �~vi, ~Gct
ij ¼ ~Gij � ð~Gij �~eÞ~e� 0:5ðdi~xi þ dj~xjÞ �~e represent the relative

particle velocity and its tangential component before the collision process respectively. The
parameter bji ¼ mj=ðmi þ mjÞ is the ratio of the colliding particle masses and kpn is the restitution
coefficient of the normal velocity components of the colliding particles. The direction of the
unit vector ~e and the velocity changes of the particle ‘‘i’’ are characterized by three collision



Fig. 1. Coordinates of the collision of two particles (a) on a plane and (b) in space.
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coordinates, the distance x and the two angles h, u, which are depicted in Fig. 1a and b. Therefore,
the expressions for the velocity differences of the two colliding particles may be written in the
Cartesian coordinates as follows:
ð~V 0
i � ~V Þx � u0si � usi ¼ bji cos ci ða

�
� cx2ÞðVx � VytgciÞ � cx

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
sin hðVxtgci þ VyÞ

� bxij ½
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
ðVxtgci þ VyÞ þ x sin hðVx � VytgciÞ�

�
; ð4aÞ
2Dij
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ð~V 0
i � ~V Þy � v0si � vsi ¼ bji cos ci ða

�
� cx2ÞðVxtgci þ VyÞ þ cx

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
sin hðVx � VytgciÞ

þ bxij

2Dij
½
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
ðVx � VytgciÞ � x sin hðVxtgci þ VyÞ�

�
; ð4bÞ

ð~x0
i � ~xiÞz � x0

si � xsi ¼ 5bjibbxDij sin h� 0:5xijð1� ðx cos hÞ2Þc=di: ð4cÞ
Fig. 1a and b depict the plane and space diagrams of collision as they are used for the derivation
of the equations. In the above expressions O, is the center of the particle ‘‘i’’ and B is the center of
the particle ‘‘j,’’ x is the projection of the inter-particle distance, ðdi þ djÞ=2 onto the z-axis. The
direction of the velocity difference ~V 2 � ~V 1 � ~V j � ~V i is along the coordinate line Og0 as shown in
Fig. 1a and b. The other parameters are: a ¼ 1þ kpn, b ¼ 2=7 (a parameter that accounts for the
inertia of the spherical particle), and c ¼ a� b. The angles ci and cj for both particles are
determined from the ratio of the transverse velocity component to that of the longitudinal
component tan ci ¼ vsi=usi and tan cj ¼ vsj=usj.

It must be mentioned that the angle u characterizes the difference in the motion of particles
with different characteristics (particle fractions). In the case of the so called ‘‘fluctuating colli-
sions,’’ this angle varies in the range 06u6 2p regardless to the motion of the particles. In the
case of the ‘‘averaged collisions,’’ this angle varies in the range 06u6uij. In the latter case, the
upper limit uij is determined by the expression:tanuij ¼ tanðcj � ciÞ. Hence, the angle totally
depends on the difference of the velocities of particle fractions that compose the solid phase. In the
particular case of identical particles, u � 0.

The other collision coordinates vary in the ranges 06 h6 2p and 06 x6 1. The calculations for
the tangential velocity component in terms of the collision coordinates result in the expression

j~Gct
ij j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxDijÞ2 � xDij sin hxij þ 0:25ð1� x2 cos2 hÞx2

ij

q
� N and the scalar product of the normal

vector to the vector of particles relative velocity becomes:~e � ~Gij �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
Dij.

The condition specified in Eq. (1) for the importance of collisions may be written as follows for
the polydisperse mixture:
~e � ~Gij

j~Gct
ij j

* +
u;x;h

¼

R uij

0
du
R 1

0
x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
dx
R 2p
0

Dijdhffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxDijÞ2�xDijxij sin hþ0:25x2

ijð1�ðx cos hÞ2Þ
p

2puij

R 1

0
xdx

<
2

7f ð1þ kpnÞ
ð5Þ
To simplify the description and to obtain analytically final expressions of tensor stresses for
various velocity components we will evaluate the left-hand side of the inequality for three different
cases of particle velocities, namely:

(a) The magnitude of the translational velocity of the colliding particles is much smaller than the
angular velocity: Dij � xij.

(b) The translational velocity of colliding particles is of the same order of magnitude as the angu-
lar velocity: Dij � xij.

(c) The translational velocity of the colliding particles is much larger than the angular velocity:
Dij � xij.
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In the first case, the left-hand side of the inequality (7) is reduced to an integral that is equal to
zero. In the second and third cases the inequality yields: 2

R 1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
dx ¼ p

2
< 2

7fa.
Therefore, when the magnitude of the translational velocity is much smaller than the angular

velocity (case 1), sliding friction is important when
f 6 4=ð7pð1þ kpnÞÞ: ð6Þ

Hence, the differences between the post- and pre-collision translation and angular velocities of the
colliding particles may be obtained in terms of the collision coordinates as follows:
ð~v0i �~viÞx � u0si � usi ¼ bjiaðAðVx cos ci � Vy sin ciÞ � BðVx sin ci þ Vy cos ciÞÞ; ð7aÞ
ð~v0i �~viÞy � v0si � vsi ¼ bjiaðAðVx sin ci þ Vy cos ciÞ þ BðVx cos ci � Vy sin ciÞÞ; ð7bÞ

ð~x0
i � ~xiÞz � x0

si � xsi ¼ 5bjifa
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
Dijðezsy � eyszÞ=di ¼ 5bjifa

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
DijC=di; ð7cÞ
The parameters A, B, C are calculated for the three cases described above as follows:

1. For the case Dij � xij,
A ¼ 1� x2 þ fx
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
sin hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðx cos hÞ2
q ; B ¼ x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
sin h� f ð1� x2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðx cos hÞ2
q ; and

C ¼ f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðx cos hÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
Dij:
2. For the case Dij � xij,
A ¼ 1� x2 � fx
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
ðx� sin hÞ

1� x sin h
; B ¼ x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
sin h� f ð1� x2Þ; and

C ¼ f 1

 
� ðx cos hÞ2

1� x sin h

! ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
Dij:
3. For the case Dij � xij,
A ¼ 1� x2 � fx
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
; B ¼ bx

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
þ f ð1� x2Þc sin h; and

C ¼ �f
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
Dij sin h:
Hence, the velocity correlations are calculated as the product of the velocity differences of the
various components by taking into account the subsequent averaged procedure over the three
collision coordinates ðu; x; hÞ. Then one can determine the following six velocity correlations, by
considering the sliding friction collision process in the case of any particle fraction, i, of a poly-
disperse mixture:
hðv0si � vsiÞðu0si � usiÞiju;x;h ¼ b2
jia

2ðVi þ VjÞ2fð0:5ðhA2i � hB2iÞ sin 2ci þ hABi cos 2ciÞAij

� 0:5bððhA2i � hB2iÞ sin 2ci þ 2hABi cos 2ciÞCij � ððhA2i
2
� hB iÞ cos 2ci � 2hABi sin 2ciÞBijcg; ð8aÞ
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hðv0si � vsiÞ2iju;x;h ¼ b2
jia

2ðVi þ VjÞ2fðhA2i sin2 ci þ hB2i cos2 ci þ hABi sin 2ciÞAij

þ 0:5bððhA2i � hB2iÞ cos 2ci � 2hABi sin 2ciÞCij

� ððhA2i � hB2iÞ sin 2ci þ 2hABi cos 2ciÞBijcg; ð8bÞ

hðu0si � usiÞ2 þ ðv0si � vsiÞ2iju;x;h ¼ b2
jia

2ðVi þ VjÞ2ðhA2i þ hB2iÞAij; ð8cÞ

hðv0si � vsiÞðx0
si � xsiÞiju;x;h ¼ b2

jia
2 5ðVi þ VjÞ2 cos ci

di
� ½ðhACitgci þ hBCiÞLij � ðhACi � hBCitgciÞMij�; ð8dÞ

hðu0si � usiÞðx0
si � xsiÞiju;x;h ¼ b2

jia
2 5ðVi þ VjÞ2 cos ci

di
� ½ðhACi � hBCitgciÞLij þ ðhACitgci þ hBCiÞMij�; ð8eÞ
and
hðx0
si � xsiÞ2iju;x;h ¼ b2

jia
2 25ðVi þ VjÞ2hCi2

d2i
Aij: ð8fÞ
Hence, the averaged parameters for the three cases (a)–(c), considered are given by the following
expressions:

1. For the first case,
hA2iju;x;h ¼
1

3
þ f 2

10
; hB2iju;x;h ¼

1

12
þ 2f 2

5
; hABiju;x;h ¼ hACiju;x;h � 0;

hBCiju;x;h ¼ � 2f 2

5
; and hC2iju;x;h ¼

5f 2

12
:

2. For the second case,
hA2iju;x;h ¼
1

3
� 2f

5
þ f 2

10
; hB2iju;x;h ¼

1

12
þ f 2

3
; hABiju;x;h ¼

f
15

ðf � 4Þ;

hACiju;x;h ¼
f
3
� f 2

15
; hBCiju;x;h ¼ �f

1

60

�
þ f

3

�
; and hC2iju;x;h ¼

9f 2

20
:

3. For the third case,
hA2iju;x;h ¼
1

3
� pf

8
þ f 2

6
; hB2iju;x;h ¼

1

12
þ pf

16
þ f 2

6
; hABiju;x;h ¼ hACiju;x;h � 0;

hBCiju;x;h ¼ � f
5

2

3

�
þ f

�
; and hC2iju;x;h ¼

f 2

4
:

It must be pointed out that if the sliding friction is not of importance in the computations one
has to apply the system of equations that do not take into account the sliding friction collision,
that is to ‘‘switch off’’ the sliding friction from the system of closure equations. In the absence of
sliding friction the velocity correlation equations may be obtained from Frishman et al. (1997).
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The velocity correlations describe the influence of the collision forces on the motion of the
particles. By the additional correlation of the square of the angular particle velocity one may
determine the change of the angular velocity in the description of the inter-particle–particle col-
lisions with respect to the ‘‘fluctuation part’’ of the collision procedure. We prefer to use the
method of averaging because, by using the ‘‘average part’’ of the particles� collision process, it is
rather easy to compute the parameters of the collision process from the average linear and angular
velocities for the colliding particles. On the other hand, it is not as easy to do this in the absence of
any knowledge of the fluctuations of the particle angular velocity. The expressions derived in this
section facilitate the calculation of the parameters of the collision process as either the ‘‘average’’
or the ‘‘fluctuation components’’ in all cases.
3. Application of the closure equations to an eddy-viscosity model

We apply the closure equations for the collision process of particles to model for the transport
equations of a polydisperse gas–solid mixture, which is based on a Boussinesq eddy-viscosity
concept. By decomposing the general Boussinesq equation one may obtain the various terms for
the closure transport equation of the polydisperse phase as described in the article by Frishman
et al. (1997). Thus, one introduces into the model the pseudo-viscosity coefficients, mx;y;xsi , in the
linear and angular momentum equations of the dispersed phase. These coefficients are calculated
by taking their respective averages over the collision coordinates, during the time of the collision,
tijcol. In the case that the gas–solids mixture is composed of N solid�s components i ¼ 1; 2; . . . ;N ,
the pseudo-viscosity coefficients� expressions are calculated as follows:
mxsi ¼
XN

j¼1;j6¼i

hðu0si � usiÞðv0si � vsiÞiju;x;htijcol; ð9aÞ

mysi ¼
XN

j¼1;j6¼i

hðv0si � vsiÞ2iju;x;htijcol; ð9bÞ

mxsi ¼
XN

j¼1;j6¼i

hðx0
si � xsiÞðv0si � vsiÞiju;x;hditijcol=2; ð9cÞ
and the collision diffusion coefficient:
Dicol ¼ 0:5
XN

j¼1;j6¼i

hðDusijÞ2 þ ðDvsijÞ2iju;x;htijcol: ð9dÞ
The time of the inter-particle collision may be given by the following expression (Marble, 1964):
tijcol ¼
2qpd

3
j

3qajðdi þ djÞ2jVj � Vi j
; ð10Þ
where aj is the mass concentration of the jth particle fraction and the velocity difference between
the colliding particles in a polydisperse mixture is calculated from the integral:
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j~V j � ~V ij ¼

R uij

0
du
R 1

0
xdx

R 2p
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 2
i þ V 2

j � 2ViVj cosu
q

dh

puij
ð11Þ
In the calculation of the time of inter-particle collisions we consider the decomposition process,
which was outlined in the previous section, for the calculation of the magnitude of the velocity
difference j~V j � ~V ij. For the calculation of the velocity differences that stem from the fluctuating
velocity components of the colliding particles we use the following conditions:
uij � 2p; Vi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u02si þ v02si

q
; and Vj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u02sj þ v02sj

q
; ð12Þ
where u0si, v
0
si are the fluctuating velocity components of the particle fraction, i. For the calculation

of the velocity differences that stem from the average velocity components of the colliding par-
ticles we obtain the following conditions:
tanuij ¼
vsj
usj

����� � vsi
usi

�
1

��
þ vsivsj
usiusj

�����; Vi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2si þ v2si

q
; and Vj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2sj þ v2sj

q
; ð13Þ
where usi, vsi denote the average velocity components of the colliding particle fractions.
4. Applications of the model

4.1. Governing equations

The approach described in Sections 2 and 3 is employed in order to model the behavior of a
solid dispersed phase composed of three particle fractions with different sizes in an axisymmetric
pipe flow with known mass fraction coefficients. It must be pointed out that, while we examine
only three particle fractions, the model is general enough to be applied to any number of fractions.
The governing equations for such a polydisperse mixture based on an Eulerian description may be
written as follows:
ou
ox

þ 1

r
oðrvÞ
or

¼ 0; ð14aÞ

u
ou
ox

þ v
ou
or

¼ � op
qox

þ 1

r
o

or
rðmþ mtÞ

ou
or

�
X3
i¼1

ai
C0

Di

si
ðu� usiÞ; ð14bÞ

u
ok
ox

þ v
ok
or

¼ 1

r
o

or
rðmt þ mÞ ok

or
þ mt

ou
or

� �2

� m
o
ffiffiffi
k

p

or

 !2

þ
X3

ai
C0

Di ½ðu
n

� usiÞ2 þ ðv� vsiÞ2� �
X

hu0siu0ijturb
o
� k

ffiffiffi
k

p
; ð14cÞ
i¼1
si Lh
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ox

þ usi
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� ðDicol þ Diturb þ mxsiÞ
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oai
or

�
ousi
or

¼ 1

r
o

or
r mxsi

ousi
or

� �
� oaihu02siicol

aiox
� 1

rai

o

or
raihu0siv0siiturb þ

C0
Di

si
ðu� usiÞ

þ CMiXiðv� vsiÞ � g 1

 
� q
qp

!
; ð14dÞ
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siicol
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oðaiusiÞ
ox
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oðraiusiÞ
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r
o

or
rðDicol þ DiturbÞ

oai
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; ð14gÞ
where usi, vsi, xsi, ai are the longitudinal, transverse, angular averaged velocity and mass con-
centration of ith particle fraction respectively; u0si, v

0
si, u

0
pi, v

0
pi, are the fluctuation velocity com-

ponents of particles, caused by both the inter-particle collisions and by turbulence; mx;y;xsi are the
pseudo-viscosity coefficients; ksi is the energy exchanged during the particles� collisions; Diturb is
the turbulent diffusion coefficient; and Xi ¼ xsi � 0:5ðou=or � ov=oxÞ is the angular velocity slip.
The other coefficients of the governing equations are defined as follows:
mt ¼ Clt

ffiffiffi
k

p
LT; ð15aÞ

e ¼ k
ffiffiffi
k

p
=LT; ð15bÞ

Clt ¼ 0:07ðLT

ffiffiffi
k

p
Þ expb�2:5=ð1þ ðLT

ffiffiffi
k

p
=50mÞÞc; ð15cÞ
and
Lh ¼ 2LTk=ðLT þ kÞ: ð15dÞ

For the drag coefficient, we use the Shiller and Naumann (1933) expression for the drag multiplier
f ¼ 1þ 0:15Re0:687si . The characteristic time of the particles is s�1

i ¼ 18l=qpd
2
i . The Reynolds

number due to fluctuations is Resi ¼ di

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu� usiÞ2 þ ðv� vsiÞ2

q
=m, where di is the diameter of

particles in the fraction i.
The coefficients for the calculation of the Magnus lift force and torque, CMi and Cxi, may be

obtained from Rubinow and Keller (1961) for small Reynolds numbers, or from Yamomoto et al.
(2001) for larger Reynolds numbers.



A. Kartushinsky, E.E. Michaelides / International Journal of Multiphase Flow 30 (2004) 159–180 169
In the case of shear flow we also use the expressions for the lift derived by Saffman (1965) and
extended by Mei (1992) to higher Reynolds numbers. Alternatively, one may use the more recent
expression by Thorncroft et al. (2001) for the shear lift force (Michaelides, 2003).

The parameter bi is given by the following expression:
bi ¼
1

2

ou
or

�
� ousi

or

�
diffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðu� usiÞ2 þ ðv� vsiÞ2
q : ð16Þ
The value of this parameter varies in the range 0:005 < b < 0:4. Of the other parameters in the
governing equations, g is the gravitational force, Lh is the hybrid turbulence length scale, which is
equal to the inter-particle distance, k ¼ dRbðpqp=6qaRÞ

1=3 � 1c and LT is the integral turbulence

length scale of the single-phase flow: LT ¼ k3=2
0

e0
.

4.2. Other parameters used in the model

The governing system of equations for the dispersed phase is solved for each of the three
particle fractions (i ¼ 1; 3). The factors that are affected by the particles motion and, which are
taken into account in the computations, are the following:
4.2.1. Turbulence parameters
A two-way coupling model is used that contains with only one differential equation for k

presented by Crowe and Gillandt (1998). We purposely applied this model in so-called truncated
form, rather than the older k � e turbulence model, because the model enables one to account for
the turbulence modulation caused by the presence of particles. Turbulent energy is produced by
the average velocity lag between the two phases and is proportional to square of the velocity lag.
To balance the growth of such additional turbulence energy, one may introduce in a semi-
empirical manner an increased value of the dissipation rate, which is determined by the hybrid
length scale Lh (Crowe and Gillandt, 1998). The latter is the harmonic average of the integral
turbulence scale of single-phase flow and inter-particle distance. Since the hybrid length scale has
the limitation that for very dilute flows, Lh ! 2LT, in the actual computations we switch to
Lh � LT whenever the mass loading is less than 0.01.

The turbulence attenuation may be described by the sum of the correlations of the various
particle-gas velocity components (Yuan and Michaelides, 1992):
X
k¼x;y
l¼y;x

hu0siku0lijturb ¼ hu0siu0ijturb þ hv0siu0ijturb þ hu0siv0ijturb þ hv0siv0ijturb: ð17Þ
The direct influence of the turbulence on the motion of the particles is through the velocity
fluctuations hu0siv0siiturb, hv02siiturb, hx0

siv
0
siiturb. Expressions for the fluid-particle and particle–particle

turbulent fluctuating velocity correlations that are caused by the turbulent fluctuations of the fluid
velocity are given by Shraiber et al. (1990).



170 A. Kartushinsky, E.E. Michaelides / International Journal of Multiphase Flow 30 (2004) 159–180
4.2.2. Particle-to-particle interactions

The influence of particle interactions may be described by the pseudo-viscosity coefficients mxsi,
mysi, m

x
si and Dicol for the linear momentum equations in the axial and radial directions, the angular

momentum equation and the continuity equation of the dispersed phase as well as by the stress
tensor components hu02siicol, hu0siv0siicol, hx0

siv
0
siicol. Considering the particle collisions effect on the

particle motion, two specific effects are taken into account:

• The collisions that result in the fluctuation of the particle velocity components, which are
caused by the turbulent fluctuations of the carrier fluid and,

• The collisions that are taken into account in the average velocity differences. These are due to
the differences in the average velocity of the particle fractions.

Therefore, all the pseudo-viscosity coefficients as well as the tensor components would consist of
two parts, the average and the fluctuation parts, which may be written as follows:
mxsi ¼ mxflucsi þ mxaversi ; mysi ¼ myflucsi þ myaversi ; mxsi ¼ mxflucsi þ mxaversi ;

Dicol ¼ Dfluc
icol þ Daver

icol ; ksi ¼ kflucsi þ kaversi ; hu02siicol ¼ hu02sii
fluc
col þ hu02sii

aver
col ;

hu0siv0siicol ¼ hu0siv0sii
fluc
col þ hu0siv0sii

aver
col ; hx0

siu
0
siicol ¼ hx0

siu
0
sii

fluc
col þ hx0

siu
0
sii

aver
col :

ð18Þ
4.2.3. Forces acting on particles

The various forces acting on the mixture are the viscous drag force, the gravitational force and
the lift forces, which were described in Section 4.1.

4.2.4. Effect of particles’ concentration/rarefaction
Since the particle distribution across the pipe is non-uniform because of the radial forces, we

use the concept of the particle mean free path, suggested by Louge et al. (1991), in order to correct
for the inhomogeneities due to the particles. Thus, the pseudo-viscosity coefficients mx;y;xsi ,
the diffusion coefficient Dicol and the stress tensor components due to the collision ksi, hu02siicol,
hu0siv0siicol, hx0

siu
0
siicol are multiplied by the factor fc ¼ 1=ð1þ c=RÞ where c is the mean free path of

the particles and R is the pipe radius.

4.2.5. Boundary conditions
We consider that particles enter the flow domain of a steady-state single-phase turbulent pipe

flow. The initial velocity for the dispersed phase is given in terms of a lag, or slip coefficient klag as
follows:
at x ¼ 0 : usi ¼ klagu; vsi ¼ klagv; xsi ¼ klagð0:5rot~vÞ; ð19aÞ
The lag coefficient klag is calculated from the terminal velocities of the different particle fractions.
Thus the particle mass concentration is calculated from the mass loading, which initially is as-
sumed to be uniform across the cross-section of the pipe.
at x ¼ 0 : ai ¼ wkfri�u=�usi: ð19bÞ
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In the last equation, w is the mass loading, �u and �usi are the average velocities of the gas-phase and
particles over the cross-section at x ¼ 0, and kfri is the initial fractional coefficient of the ‘‘ith’’
particle fraction (

P
i¼1;3 kfri ¼ 1).

In the case of the upward pipe flow that is considered here, the boundary conditions at the axis
are the axisymmetric conditions:
r ¼ 0 :
ou
or

¼ ok
or

¼ ousi
or

¼ oai
or

¼ v ¼ vsi ¼ xsi ¼ 0: ð19cÞ
At the wall, for the gaseous phase we have the no-slip conditions:
r ¼ R : u ¼ v ¼ k ¼ 0: ð19dÞ

For the dispersed phase the boundary conditions at the wall are determined by using the following
conditions, derived by Matsumoto and Saito (1970):

A. If vsi > 0 that is the particles are about to collide with the wall:
For usi � dixsi

2

�� �� > 7
2
l0ð1þ knÞvsi,
u00si ¼ usi þ ld sgn usi

�
� dixi

2

�
vsi; ð19eÞ

x00
si ¼ xsi þ 5ld sgn usi

�
� dixi

2

�
vsi
di
; ð19fÞ

v00si ¼ knvsi: ð19gÞ

For usi � dixsi

2

�� ��6 7
2
l0ð1þ knÞvsi,
u00si ¼ usi �
2

7
usi

�
� dixi

2

�
; ð19hÞ

x00
si ¼ xsi �

10

7di
usi

�
� dixi

2

�
; ð19iÞ

v00si ¼ knvsi: ð19jÞ

Finally, the linear and angular velocity components of the particle fractions are calculated by
means of the post-collision and pre-collision velocity components:
usi ¼ 0:5ðu0si þ usiÞ; xsi ¼ 0:5ðx00
si þ xsiÞ; vsi ¼ 0:5ðv00si þ vsiÞ: ð19kÞ
B. If vsi 6 0 and the particles do not collide with the wall, the simpler conditions are used:
usi ¼ �ci
ousi
or

; xsi ¼ ci
oxsi

or
; vsi ¼ 0; ð19lÞ
where ci is the mean free path of the particles, which is given by the expression:
ci ¼
qpdi

6q ai þ
P

j¼1;3;j6¼i
ajdi
4dj

1þ di
dj

� 	2� � : ð19mÞ
This takes into account the changes of the free path of the ith particle fraction due to the collisions
with the other two particle fractions. It must be pointed out that the last boundary condition
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implies that there is a velocity slip along the wall as suggested by Crowe et al. (1996). In this case,
it is reasonable to consider that the sign of the derivatives signifies that the longitudinal particle
velocity decreases towards the wall and that the angular velocity of the particles increases towards
the wall.

It must be pointed out that the correction for the mean free path takes into account the small
changes of the particle velocity due to the gradients of the velocity field at the wall. For the
numerical computations, this mean free particle path must be much larger than the mesh size of
the numerical grid.

The boundary condition for the particle mass concentration at the wall is determined by the
conservation equation for the particle masses:
r ¼ R : aivsi ¼ ðDicol þ DiturbÞ
oai
or

: ð19nÞ
In the numerical implementation of the model, the boundary conditions for the dispersed phase
are not strictly applied at the wall, but very close to it, at a distance equal to one particle diameter.
This is very important in the calculations of the transport of rough particles whose sizes exceed the
width of the viscous sub-layer and partially overlap the buffer zone. If this is not taken into ac-
count, then particles may overlap with the wall. Because of this, the flow domain for the dispersed
phase is slightly narrower than that of the gaseous phase (Hussainov et al., 1996).
5. Numerical results and discussion

For the numerical calculations, a non-uniform grid is used in a three-layer model composed of
the turbulent core, the buffer zone and the laminar sub-layer. The same numerical grid is used for
the dispersed phase, with the exception that near the wall the grid is shorter by one particle size. A
standard tri-diagonal algorithm with a six-point formula and an up-wind difference scheme is used
for the solution of the partial differential equations. The adjustable constants in the model are as
follows: kpn ¼ 0:68, kn ¼ 0:9, f ¼ 0:237, l0 ¼ 0:2 and ld ¼ 0:2 and they were applied under all the
conditions of the computations presented here. Standard values for pipe flow are assumed for the
coefficient of the turbulence model, Clt, Ct1, Ct2 and Ct3.

For the validation of the model, calculations were performed to compare the numerical results
with the experimental data by Tsuji et al. (1984), which have become the standard of comparison
for gas–solid flows. The experiments are for vertical polystyrene particles, with the following
properties and flow parameters:

A. D ¼ 30:5 mm, L ¼ 5100 mm, �u ¼ 10:7 m/s, w ¼ 1:9 kg/kg, qp ¼ 1020 kg/m3, d ¼ 243 lm;
B. D ¼ 30:5 mm, L ¼ 5100 mm, �u ¼ 10:7 m/s, w ¼ 3:4 kg/kg, qp ¼ 1020 kg/m3, d ¼ 501 lm.

The results of the calculations are shown in Fig. 2. It is observed that there is excellent agreement
between the experimental data and the numerical results of the particulate flow as well as the
single-phase flow. The numerical data even reproduce the off-center velocity maximum point at
r=R ¼ 0:5 in the mixture carrying the bigger particles. This reproduction of such a salient feature
is impossible without an accurate inter-particle collision model.



0
0 0.25 0.5 0.75 1

1
2
3
4
5
6

r/R

0u /u
1

0.75

0.5

0.25

Fig. 2. Profiles of the longitudinal velocity component of the carrier fluid with particles: d ¼ 243 lm (curve 1),

d ¼ 501 lm (curve 2), and carrier fluid alone (curve 3). The experimental data are from Tsuji et al. (1984).

A. Kartushinsky, E.E. Michaelides / International Journal of Multiphase Flow 30 (2004) 159–180 173
Fig. 3 shows the distributions of the longitudinal velocity component of the gaseous phase as
well as of the dispersed phase and the experimental data that correspond to the computed dis-
tributions. It is observed that the larger particles have higher average velocity slip a feature that is
expected in vertical flows. It must be pointed out that the agreement between the computed and
the experimental curves for the heavier particles does not appear to be as good as the others. This
may be due to experimental error or to an underestimation of the terminal velocity of the par-
ticles, which was not reported and is necessary to be used in the model.

We also run numerical calculations without taking into consideration the particle–particle
collisions and show the results in Fig. 4. It is observed that neglecting the collisions results in an
uneven distribution of the particle velocity close to the wall. In the rest of the flow field the results
are reasonable and appear to be close to the results obtained in the case of collisions. This leads us
to conclude that, at least in vertical pipes, the model of the inter-particle collisions has a
smoothing effect on the velocity computations near the boundaries of the flow. Given that inter-
particle collisions also smoothen the concentration distribution of the particles, this is a reason-
able and expected result. A glance at the last two figures shows that the particle velocity at the
walls is underestimated. This may be due to two reasons: (a) either the boundary conditions used
are not adequate and, therefore, more research is needed on a proper set of boundary conditions
at the wall, or (b) to experimental error, which is higher than normal close to the wall.

Fig. 5 depicts the transverse velocity components for two particle fractions with particle sizes
d ¼ 243 and 501 lm. The velocities are normalized by the fluid friction velocity: �vs ¼ vs=u	.

It is apparent from the results depicted in Figs. 2–4 that the particle phase lags the gaseous
phase and that there is a small-magnitude particle migration towards the center of the pipe. This is
confirmed by the computation of the particle transverse velocity shown in Fig. 5 and from the
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diagram of the mass concentration of particles in a cross-section, which is depicted in Fig. 6. It is
observed that the migration of the particles to the center of the pipe is more pronounced in the
case of bigger particles.

The distribution of the normalized turbulent intensity is shown in Fig. 7, together with the data
by Tsuji et al. (1984). For comparison purposes the intensity for the single-phase flow is also
presented. It appears that the model describes adequately, among other things, the turbulence
modulation for both the reduction, which is caused predominantly by the finer particles, and for
the enhancement of turbulence, which is caused predominantly by the coarser particles.

Fig. 8 shows the calculated values for the distributions of the turbulent viscosity of the fluid and
the pseudo-viscosity coefficient for the particles. The data by Tsuji et al. (1984), who measured
only the stream-wise velocity fluctuations, are also shown for a qualitative comparison. Although
the results are for the quantity ð2k=3Þ1=2 and the data represent the quantity ðu02Þ1=2 the general
trends in the graphs are the same. Fig. 9 depicts the turbulent diffusion coefficients of the particles
and the pseudo-diffusion coefficient of the dispersed phase. Although there are no experimental
data to compare these quantities, the numerical values shown in the figure, the trends and other
salient features of the computations appear to be reasonable and the distributions appear as
expected in vertical pipe flows.

Finally, Fig. 10 shows an example for the application of the model to the case of a polydisperse
mixture of particles. The concentration of particles is shown in the case of two systems, both
flowing with the same particle loading. The first system is the monodisperse system of the 501 lm
particles, which is also shown in Fig. 7, and the second system is a polydisperse system, composed
of equal mass fractions (33.3%) of particles with diameters d ¼ 50, 100, and 500 lm. It is observed
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that the presence of smaller particles tends to make the flowing properties of the mixture more
homogeneous. The apparent lower concentration of the polydisperse system is due to the fact that
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the smaller particles move with higher velocity, which is closer to the fluid velocity and, hence, for
the same mass flow rate, their local volumetric concentration must be lower.

Regarding the sensitivity of the model to the parameters used, we have performed computa-
tions at very high loadings, up to 100, which correspond to average concentrations in the range
from 10% to 15%. The results show that the model is robust with respect to the empirical
parameters used, up to these high values of the concentration.
6. Conclusions

An algebraic model for the closure of the transport equations of the dispersed phase in a gas–
solid mixture is obtained in the general framework of a two-fluid approach. The model takes into
account inter-particle collisions as well as particle collisions with the wall. The model applies two
mechanisms for the inter-particle collisions, namely sliding friction collision and non-sliding
friction collision. This application renders the model more flexible to be used with different flow
conditions and applications with different particle fractions. The stress tensor components and the
pseudo-viscosity coefficients are analytically obtained and the resulting set of equations is used for
the closure of the conservation equations for the mass, the linear momentum and the angular
momentum of the solid phase. The numerical computations for a two-phase turbulent upward
pipe flow agree well with the experimental data by Tsuji et al. (1984) and reproduce all the salient
features of the experimental trends. The model may be further expanded to include computations
for the calculation of the particle motion of polydisperse gas–solid flows.
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